Exploring Content-based Artwork Recommendation with Metadata and Visual Features
نویسندگان
چکیده
Compared to other areas, artwork recommendation has received lile aention, despite the continuous growth of the artwork market. Previous research has relied on ratings and metadata to make artwork recommendations, as well as visual features extracted with deep neural networks (DNN). However, these features have no direct interpretation to explicit visual features (e.g. brightness, texture) which might hinder explainability and user-acceptance. In this work, we study the impact of artwork metadata as well as visual features (DNN-based and aractiveness-based) for physical artwork recommendation, using images and transaction data from the UGallery online artwork store. Our results indicate that: (i) visual features perform beer than manually curated data, (ii) DNN-based visual features perform beer than aractiveness-based ones, and (iii) a hybrid approach improves the performance further. Our research can inform the development of new artwork recommenders relying on diverse content data.
منابع مشابه
An Approach to Art Collections Management and Content-based Recovery
This study presents a comprehensive solution to the collection management, which is based on the model for Cultural Objects (CCO). The developed system manages and spreads the collections that are safeguarded in museums and galleries more easily by using IT. In particular, we present our approach for a non-structured search and recovery of the objects based on the annotation of artwork images. ...
متن کاملEnhanced movie content similarity based on textual, auditory and visual information
In this paper we examine the ability of low-level multimodal features to extract movie similarity, in the context of a content-based movie recommendation approach. In particular, we demonstrate the extraction of multimodal representation models of movies, based on textual information from subtitles, as well as cues from the audio and visual channels. With regards to the textual domain, we empha...
متن کاملAutomatic Hashtag Recommendation in Social Networking and Microblogging Platforms Using a Knowledge-Intensive Content-based Approach
In social networking/microblogging environments, #tag is often used for categorizing messages and marking their key points. Also, since some social networks such as twitter apply restrictions on the number of characters in messages, #tags can serve as a useful tool for helping users express their messages. In this paper, a new knowledge-intensive content-based #tag recommendation system is intr...
متن کاملSynthetic Image Categorization
We introduce NPIC, an image classification system that focuses on synthetic (e.g., non-photographic) images. We use class-specific keywords in an image search engine to create a noisily labeled training corpus of images for each class. NPIC then extracts both content-based image retrieval (CBIR) features and metadata-based textual features for each image for machine learning. We evaluate this a...
متن کاملNPIC: Hierarchical Synthetic Image Classification Using Image Search and Generic Features
We introduce NPIC, an image classification system that focuses on synthetic (e.g., non-photographic) images. We use class-specific keywords in an image search engine to create a noisily labeled training corpus of images for each class. NPIC then extracts both content-based image retrieval (CBIR) features and metadata-based textual features for each image for machine learning. We evaluate this a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1706.05786 شماره
صفحات -
تاریخ انتشار 2017